Correlation and Causality

Dr. Paul Larsen

April 15, 2022

Why causality matters

Because correlation is a proxy.

spurious correlations

Letters in Winning Word of Scripps National Spelling Bee correlates with
Number of people killed by venomous spiders

Correlation: 0.8057

Why causality matters

Because A / B testing is not always possible．

Simpson＇s paradox：cautionary tales

Simpson＇s paradox：a phenomenon in probability and statistics in which a trend appears disappears or reverses depending on grouping of data．［Wik］，［PGJ16］

Example：University of California，Berkeley 1973 admission figures

	Men		Women	
	Applicants	Admitted	Applicants	Admitted
Total	8442	44\％	4321	35\％
［FPP98］				

Department	Men		Women	
	Applicants	Admitted	Applicants	Admitted
A	$\mathbf{8 2 5}$	62%	108	$\mathbf{8 2 \%}$
B	$\mathbf{5 6 0}$	63%	25	$\mathbf{6 8 \%}$
C	325	$\mathbf{3 7 \%}$	$\mathbf{5 9 3}$	34%
D	417	33%	375	$\mathbf{3 5 \%}$
E	191	$\mathbf{2 8 \%}$	$\mathbf{3 9 3}$	24%
F	373	6%	$\mathbf{3 4 1}$	$\mathbf{7 \%}$

［BHO75］

A brief, biased history of causality

- Aristotle, 384-322 BC
- Isaac Newton, 1643-1727 AD
- David Hume, 1711-1776 AD
- Francis Galton, 1822-1900 AD, Karl Pearson, 1857-1936 AD
- Judea Pearl, b. 1936 AD

Counterfactuals and causality

Ideal: Intervention + Multiverse \rightarrow Causality
Examples:

- Medical treatment (e.g. kidney stone treatment)
- Social outomes (e.g. university admissions)
- Business outcomes (e.g. click-through rate, hit rate)

In-practice:

- Correlation: approximate multiverse by comparing intervention at t to result at $t-1$
- Random population: approximate multiverse by splitting sample well
- A / B testing: random populations $A / B+$ intervention in one

Counterfactual example：hit rate for insurance

Variables：

－producttype：Client line of business
－days：Number of days to generate quote
－rating：Binary indication of client risk
－hit：Binary， 1 for success（binding the quote）， 0 for failure

Fake data：

product＿type	days	rating	hit
property	3	1	0
liability	1	0	0
financial	0	1	0
liability	3	0	0
liability	0	0	1

Counterfactual example: hit rate for insurance

Variables:

- producttype: Client line of business
- days: Number of days to generate quote
- rating: Binary indication of client risk
- hit: Binary, 1 for success (binding the quote), 0 for failure

Non-counterfactual approach: condition and query

Goal: estimate effect of days on hit.
Calculate

- $P($ hit $=1 \mid$ days $=0)-P($ hit $=1 \mid$ days $=1)$,
- $P($ hit $=1 \mid$ days $=1)-P($ hit $=1 \mid$ days $=2)$,

From exercise Jupyter notebook:
hit

days	
0	0.532706
1	0.442064
2	0.330519
3	0.174006

The Structural Causal Model

The definitions in following slides are from [Pea07], [PGJ16].

Definition

A structural causal model M consists of two sets of variables U, V and a set of functions F, where

- U are considered exogenous, or background variables,
- V are the causal variables, i.e. that can be manipulated, and
- F are the functions that represent the process of assigning values to elements of V based on other values in U, V, e.g. $v_{i}=f(u, v)$.
We denote by G the graph induced on U, V by the functions F, and call it the causal graph of (U, V, F).

Hit rate example: $U=\{$ producttype, rating $\}, V=\{$ days, hit $\}, F \leftrightarrow$ sample from conditional probabilty tables in directed graphical model.

Formalizing interventions: the intuition of "do"
For business application, quantity of interest is not P (hit $=1 \mid$ days $=d$), but intervention

$$
P(\text { hit }=1 \mid \text { do }(\text { days }=d))
$$

Formalizing interventions: the intuition of "do"

For business application, quantity of interest is effect of intervention / counterfactual Not $P($ hit $=1 \mid$ days $=d)$ but $P($ hit $=1 \mid$ do $($ days $=d))$

Formalizing interventions: the intuition of "do"
First, find quantities unchanged between G and $G^{\prime}=G_{\underline{\text { days }}}$

$$
\begin{align*}
& P_{G^{\prime}}(\text { producttype }=p, \text { rating }=r) \\
& \quad=P_{G}(\text { producttype }=p, \text { rating }=r) \tag{1}\\
& \quad P_{G^{\prime}}(\text { hit }=1 \mid \text { producttype }=p, \text { rating }=r) \\
& \quad=P_{G}(\text { hit }=1 \mid \text { producttype }=p, \text { rating }=r) \tag{2}
\end{align*}
$$

Formalizing interventions：the intuition of＂do＂

$$
\begin{aligned}
& P(\text { hit }=1 \mid \text { do }(\text { days })=d) \\
& =P_{G^{\prime}}(\text { hit }=1 \mid \text { days }=d) \text {, by definition } \\
& =\sum_{p, r} P_{G^{\prime}}(\text { hit }=1 \mid \text { days }=d, \text { producttype }=p, \text { rating }=r) \\
& \quad P_{G^{\prime}}(\text { producttype }=p, \text { rating }=r \mid \text { days }=d) \text {, by total probability } \\
& =\sum_{p, r} P_{G^{\prime}}(\text { hit }=1 \mid \text { days }=d, \text { producttype }=p, \text { rating }=r) \\
& \quad P_{G^{\prime}}(\text { producttype }=p, \text { rating }=r), \text { by substitution } \\
& =\sum_{p, r} P_{G}(\text { hit }=1 \mid \text { days }=d, \text { producttype }=p, \text { rating }=r)
\end{aligned}
$$

$$
P_{G}(\text { producttype }=p, \text { rating }=r), \text { our adjustment formula }
$$

References：［PGJ16］，［Pro］

Causal hit rate

Typical quantity of interest：average treatment effect or ATE

$P($ hit $=1 \mid$ days $=d)$		$P($ hit $=1 \mid$ do（days	
	hit		prob
days		days	
0	0.532706	0	0.565343
1	0.442064	1	0.397330
2	0.330519	2	0.240322
3	0.174006	3	0.215639

Causal hit rate，II

Compute relative average treatment effect for different values of days：

$$
\begin{aligned}
\text { relative-ate }_{G}= & \frac{P_{G}(\text { hit }=1 \mid \text { days }=d)-P_{G}(\text { hit }=1 \mid \text { days }=d+1)}{P_{G}(\text { hit }=1 \mid \text { days }=d)} \\
\text { relative-ate }_{G^{\prime}}= & \frac{P_{G}(\text { hit }=1 \mid \text { do }(\text { days }=d))-P_{G}(\text { hit }=1 \mid \text { do }(\text { days }=d+1))}{P_{G}(\text { hit }=1 \mid \text { do }(\text { days }=d))} \\
& =\frac{P_{G^{\prime}(\text { hit }=1 \mid \text { days }=d)-P_{G^{\prime}}(\text { hit }=1 \mid \text { days }=d+1)}^{P_{G^{\prime}}(\text { hit }=1 \mid \text { days }=d)}}{} \begin{array}{rrrr}
& \\
& \text { from-d } & \text { to-d } & \text { ate-given } \\
\hline 0 & 1 & 0.170153 & 0.297187 \\
1 & 2 & 0.252329 & 0.395158 \\
2 & 3 & 0.473538 & 0.102707 \\
\hline
\end{array}
\end{aligned}
$$

Judea Pearl's Rules of Causality

Let X, Y, Z and W be arbitrary disjoint sets of nodes in a DAG G. Let G_{X} be the graph obtained by removing all arrows pointing into (nodes of) X. Denote by G_{X} the graph obtained by removing all arrows pointing out of X. If, e.g. we remove arrows pointing out of X and into Z, we the resulting graph is denoted by $G_{\underline{X} \bar{Z}}$ Rule 1: Insertion / deletion of observations

$$
P(y \mid \operatorname{do}(x), z, w)=P(y \mid \operatorname{do}(x), w) \text { if }(Y \Perp Z \mid X, W)_{G_{\bar{x}}}
$$

Rule 2: Action / observation exchange

$$
P(y \mid \operatorname{do}(x), \operatorname{do}(z), w)=P(y \mid \operatorname{do}(x), z, w) \text { if }(Y \Perp Z \mid X, W)_{G_{\bar{x} \underline{z}}}
$$

Rule 3: Insertion / deletion of actions

$$
P(y \mid \operatorname{do}(x), \operatorname{do}(z), w)=P(y \mid \operatorname{do}(x), w) \text { if }(Y \Perp Z \mid X, W)_{G_{X Z(W)}},
$$

where $Z(W)$ is the set of Z-nodes that are not ancestors of any W-node in G_{X}.

Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of the causal rules.

Rule 1': Insertion / deletion of observations, with $W=\emptyset$

$$
P(y \mid \operatorname{do}(x), z)=P(y \mid \operatorname{do}(x)) \text { if }(Y \Perp Z \mid X)_{G_{\bar{x}}}
$$

Rule 2': Action / observation exchange, with $X=\emptyset$

$$
P(y \mid \operatorname{do}(z), w)=P(y \mid z, w) \text { if }(Y \Perp Z \mid W)_{G_{\underline{z}}}
$$

Rule 3': Insertion / deletion of actions, with $X, W=\emptyset$

$$
P(y \mid \operatorname{do}(z))=P(y) \text { if }(Y \Perp Z)_{G_{\bar{z}}}
$$

Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of the causal rules.

Rule 1': Insertion / deletion of observations, with $W=\emptyset$

$$
P(y \mid \operatorname{do}(x), z)=P(y \mid \operatorname{do}(x)) \text { if }(Y \Perp Z \mid X)_{G_{\bar{x}}}
$$

Rule 2': Action / observation exchange, with $X=\emptyset$

$$
P(y \mid \operatorname{do}(z), w)=P(y \mid z, w) \text { if }(Y \Perp Z \mid W)_{G_{\underline{z}}}
$$

Rule 3': Insertion / deletion of actions, with $X, W=\emptyset$

$$
P(y \mid \operatorname{do}(z))=P(y) \text { if }(Y \Perp Z)_{G_{\bar{z}}}
$$

\Longrightarrow d-separation + causal rules $=$ adjustment formulas: do queries as normal queries.

References I

[BHO75] P. J. Bickel, E. A. Hammel, and J. W. O'Connell, Sex Bias in Graduate Admissions: Data from Berkeley, Science 187 (1975), no. 4175, 398-404.
[ERSS ${ }^{+}$13] Ramón Estruch, Emilio Ros, Jordi Salas-Salvadó, Maria-Isabel Covas, Dolores Corella, Fernando Arós, Enrique Gómez-Gracia, Valentina Ruiz-Gutiérrez, Miquel Fiol, José Lapetra, et al., Primary prevention of cardiovascular disease with a mediterranean diet, New England Journal of Medicine 368 (2013), no. 14, 1279-1290.
[FPP98] D. Freedman, R. Pisani, and R. Purves, Statistics, W.W. Norton, 1998.
[Pea07] Judea Pearl, The mathematics of causal inference in statistics, To appear in 2007 JSM Proceedings 337 (2007).
[PGJ16] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell, Causal inference in statistics: A primer, John Wiley \& Sons, 2016.

References II

[Pro] Christopher Prohm, Causality and function approximation, https://cprohm.de/article/ causality-and-function-approximations.html.
[Vig] Typer Vigen, Spurious Correlations, Spiders and Spelling-Bees, http://tylervigen.com/view_correlation?id=2941.
[Wik] Wikipedia, Simpson's paradox, https://en.wikipedia.org/wiki/Simpson's_paradox.

